

Journal of Information Technology and Computer Science
Volume 6, Number 3, December 2021, pp. 288-296

Journal Homepage: www.jitecs.ub.ac.id

Internet of Things (IoT) Cloud Platform

Using Message Queue Telemetry Transport (MQTT)

End-to-Cloud Architecture

Fariz Andri Bakhtiar*
1
,Moh. Wildan Habibi

2
,Adhitya Bhawiyuga

3
,Achmad Basuki

4

1,2,3,4Faculty of Computer Science, Universitas Brawijaya, Indonesia
{1fariz,3bhawiyuga,4abazh}@ub.ac.id,2mohwildanhabibi@gmail.com

*Corresponding Author

Received 04 May 2021; accepted 28 December 2021

Abstract. IoT devices are constrained in computation and storage, therefore
cannot store all long-term obtained data or perform complex computations.

Shifting those jobs to cloud platform are feasible, yet rising heterogeneity and
security issues. This study proposes an IoT cloud platform to facilitate
communication among heterogeneous devices and the cloud while ensuring

devices’ validity. It uses publish/subscribe paradigm with an end-to-cloud
architecture and HTTP-based auth server. The proposed system has
successfully addressed heterogeneity and security issues. Performance tests

conclude that the fewer publishers publish data simultaneously, the smaller the
delay. Moreover, the system performs better at up to 250 publishers as the
average delay is under 1000 ms, compared to 500 publishers that has average

delay above 1000 ms. On its scalability, in 250-concurrent-publishers
experiment, the system affords 191 publishers responded in under one second
with 100% success rate. In 500-concurrent-publishers one, 187 responded in

under one second with 99% rate.

1 Introduction
Internet of Things (IoT) refers to networks connecting various physical devices

through different protocols [1]. IoT enables many events to be monitored and

controlled remotely through the internet. The application of IoT in various fields

could have connected each other via internet, hence making activities easier and more

efficient.
The “things” in IoT are represented by interconnected devices that have certain

identity, attributes, and characteristics. An IoT device commonly uses mini-computer

having sensors to get some data. However, IoT devices have some limitations in

computation and storage due to constrained components [2]. IoT device itself could

not store all data obtained over the years of acquisition. They also do not have

adequate resources to operate complex computations.
It is said [3] that “cloud” is a group of computing resources objects that can be

configured and accessed from anywhere and have resources that can be quickly added

or subtracted in an easy way. The study states that cloud virtually has unlimited

storage and computing capabilities. Therefore, shifting IoT device’s storage and

computation processes to other system such as cloud computing platform can be

workable solution.

Fariz Andri et al. , IoT Cloud Platform... 289

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Integrating cloud into IoT architecture could rise some issues, mainly

heterogeneity and security [2]. A use of communication standard is needed to make

sure that all IoT devices can communicate with the cloud. To ensure that the system is

secure from spoofing threats, a device identification/validation mechanism is

required.
The MQ Telemetry Transport (MQTT) protocol has the ability to work at

environments that come up with low supply of power and small bandwidth [4]. It also

offers reliability of the messages exchanged among nodes. Those features make it

suitable to support an IoT system with diverse nodes.
As mentioned earlier, this study is intended to build an IoT cloud platform to

facilitate communication among heterogeneous IoT devices and the cloud while

ensuring validity of the devices involved. MQTT protocol is put to use in order to

tackle the heterogeneousness issue. For ascertaining that the data would come from

legitimate IoT devices, a technique of device management, authentication and

authorization is necessary.

2 Proposed System

2.1 System Overview

Fig. 1. The system’s data communication flow.

In general, the proposed IoT cloud platform system uses MQTT
Publish/Subscribe communication paradigm with an end-to-cloud architecture. The
“end” is represented by an IoT device (sensor node) in the field which acts as a
publisher sending its obtained data. On the other hand, the “cloud” in question is an
IoT cloud platform system consisting of a subscriber, database, broker, and auth
server, as depicted in Fig. 1. The cloud acts as storage and the recipient of data sent by
sensor nodes. Publisher and subscriber scripts are developed using Python with the
help of the paho-mqtt module.

The MQTT protocol uses the broker as a center for exchanging information
between publishers and subscribers. The publisher, in the form of the sensor node,
sends to the broker the sensor data information that has been obtained along with
“topic” initialization. The system utilizes the topic as “destination address” which is

290 JITeCS Volume 6, Number 3, December 2021, pp 288-296

p-ISSN: 2540-9433; e-ISSN: 2540-9824

used by the publisher to send its data to. The data sent to a particular topic through the
broker will be accessible by any subscriber knowing what topic is currently being
used.

To be able to get messages from the publishers, a subscriber must make
requests or subscribe to the same topics as the ones used by the publishers.
Subsequently, the broker will reply the subscriber with information by first comparing
the identity of the same topic between publisher and subscriber. If they match, the
broker will then forward to the subscriber the data obtained from the publisher.

2.2 Publisher-Handling Workflow

Fig. 2. The system’s publisher-handling workflow.

Publishers are handled by the system as represented in Fig. 2. As the sensor

node needs to publish the data, it is required to build a connection to the broker first.
The broker then detects a connection request from it, and the connection data will be
forwarded to auth server for authenticity checking afterwards.

When the auth server accepts the authentication request, it will then be
processed, and the result will be sent back as the response which will be forwarded by
the broker to the publisher. If the received response at publisher indicates that it is
approved to connect to the broker, then subsequently the publisher will publish the
data on the determined topic.

A request to publish data will then be sent by the authenticated publisher to
the broker, which for the second time will get the published data off to the auth
server, but this time for authorization check. The authorization check results will
proceed as a response from the auth server to the broker.

If the response received by the broker is “positive”, then the broker will be
entitled to temporarily store the published data so that when any subscriber subscribes
to the same topic, that data will be forwarded to the subscriber. If the response is
“negative”, the broker will not save the published data and will not accordingly
forward it to the subscriber, even though the same topic is subscribed.

Fariz Andri et al. , IoT Cloud Platform... 291

p-ISSN: 2540-9433; e-ISSN: 2540-9824

2.3 Subscriber-Handling Workflow

Fig. 3. The system’s subscriber-handling workflow.

The system handles subscribers in a way described in Fig. 3. The workflow

starts when a subscriber builds a connection required to subscribe a specific topic.
Connection request from subscriber will be detected to be forwarded by broker to the
auth server to check its authenticity.

After accepting the authentication request, auth server will immediately
process and returns it to the broker as a response. Broker forwards the response back
to the subscriber that sent the request at the first place. Auth server’s approval will be
the signal for subscriber to try to fetch the data it needs using certain topic.

When the broker detects a subscription request came from an authenticated
subscriber, it will then forward it to the auth server for checking its authorization. The
result from auth server will be returned as a response to the broker. If the initial
request by the subscriber is authorized, the broker may finally forward published data
from authenticated publishers to any subscriber that subscribes to the same topic.

2.4 Database Design Scheme

The system’s data processing starts from the process of sending data that has

been successfully authenticated and authorized. After this stage, the data will be

received on the subscriber side. The subscriber checks the data payload scheme. If it

matches the database schema, the data will be stored in the MongoDB-based database.
The database uses MongoDB, which is a document-oriented database

system. In this database, data is represented in BSON (Binary JSON) documents.

There are three collections used in this database, namely User collection, Nodes

collection, and Subscriptions collection. Each has a field used as reference in filling in

the collection. The contents of a collection are documents.

292 JITeCS Volume 6, Number 3, December 2021, pp 288-296

p-ISSN: 2540-9433; e-ISSN: 2540-9824

User collection is useful for storing user-related data, or users who have

rights to contribute to the system. Nodes collection is effectively used to store data

related to microcontrollers utilized as sensor nodes. There is one collection, namely

Sensors collection, that is a little different from other ones as it is a collection inside

another collection. It is worthwhile in storing data related to sensors owned or used by

the microcontroller. Subscriptions collection is functional for storing data that has

been sent by sensor nodes. The entire collections are related to one another through

the “_id” field used by each collection, as depicted in Fig. 4.

_id: <ObjectId1>
username: <string>
password: <string>
email: <string>
firstname: <string>
is_admin: <int>

_id: <ObjectId2>
user: <ObjectId1>
label: <string>
secretkeyl: <string>
subsperday: <int>
subsperdayremain: <int>
is_public: <int>

_id: <ObjectId3>
Label: <string>

_id: <ObjectId4>
node: <ObjectId2>
sensor: <ObjectId3>
data: <int>
timestamp: <ISODate>

Fig. 4. MongoDB database scheme used by the system.

2.5 Auth Server Design

To address the needs for mechanisms of device management, authentication,

and authorization, a Hypertext Transfer Protocol (HTTP)-based Auth Server is

required. It is formulated to always monitor every connection that tries to connect to

the broker, as per broker’s demands. It serves three kinds of requests, namely

authentication, superuser, and authorization. Authentication aims to ensure the

validity of the IoT device that sends data. Superuser verifies the validity of

subscribers. Meanwhile, authorization’s objective is to make certain the validity of the

topics used by IoT devices when sending data.
As portrayed in Fig. 5, when Auth Server is running, it will always be in a

state of ready to use if there is no active request from the broker for any examination.

If there is a request, the follow-up of each request will be nonidentical in the process,

but all of them will end up responding to the broker.

Fariz Andri et al. , IoT Cloud Platform... 293

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Fig. 5. The system’s Auth Server design.

2.6 Broker Design

Broker’s line of work is to accept published data from publishers using

specific topics, then forward them to subscribers who subscribe to the very topics.

Fig. 6 illustrates the algorithm of the broker as an MQTT Server. It starts with running

the MQTT Broker function. When there is any latest data published by publisher, the

broker will receive and store it based on its topic. At the time of a subscriber

subscribes to a topic identical with one used by any publisher, published data that is

already at the broker will be forwarded to the subscriber.

Fig. 6. The system’s broker design.

294 JITeCS Volume 6, Number 3, December 2021, pp 288-296

p-ISSN: 2540-9433; e-ISSN: 2540-9824

2.7 Subscriber Design

Subscriber’s job is to receive data that has been checked by the broker and

store it to its database afterwards. Fig. 7 shows the subscriber's algorithm. A

subscriber starts its work with a connection attempt to the broker. The broker will

always check every attempted connection. Once connected, the subscriber will be

ready to receive published data. When there is published data received, the subscriber

will check whether the payload data have met the parameters in the publisher design.

If so, the subscriber will then match the database used and store the published data in

its database.

Fig. 7. The system’s subscriber design.

3 Experiment

The experiment was divided into two parts i.e. delay time experiment and the

proposed system’s scalability performance. Table 1 shows experiment results of delay

that occured while the data was being sent from publisher until received by subscriber

without being inputted to the database.

Table 1. Results of average delay time occurred on data delivery from publisher to subscriber

with as many publishers as 100, 250, and 500.

Delay

Publisher Avg. Delay

(ms)

Publisher Avg. Delay

(ms)

Publisher Avg. Delay

(ms)

100 56.730 250 173.380 500 450.370

100 91.810 250 1021.920 500 5786.104

Fariz Andri et al. , IoT Cloud Platform... 295

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Delay

100 112.700 250 810.332 500 3495.172

100 87.080 250 668.544 500 3243.882

The results in Table 1 convey that the delay time occured is directly

proportional to the number of publishers who published data. The delay time occurred

in the system when using 100 publishers and when using 250 publishers was always

under 1000 ms. Whereas in experiments using number of publishers as many as 500,

the delay time was above 1000 ms, so that it can be said to have worse results

compared to one with less than 500 publishers.
It can be concluded that the system can handle the number of publishers less

than 500 publishers at one time. Table 2 shows the results of experiments conducted

to find out the number of publishers the system can handle per second. The

experiments were carried out using 100, 250, and 500 publisher variations that had

been accessed at the same time.

Table 2. Results of experiments getting the number of publishers the system can handle per

second with the number of publisher variations accessed simultaneously as many as 100, 250,
and 500.

Scalability
Publisher Responded Success Rate (%) Responded < 1s

100 100 100% 100

100 100 100% 100

100 100 100% 100

100 100 100% 100

250 250 100% 250

250 250 100% 156

250 250 100% 167

250 250 100% 191

500 500 100% 451

500 493 99% 1

500 495 99% 109

500 496 99% 187

The results reveal that the system is able to handle up to 500 publishers

concurrently, with a success rate of 99%. In addition, the test results show that in

system testing where 500 publishers were employed, the average number of

publishers handled in under 1 second is 187 publishers.

4 Conclusion

The proposed system of MQTT-based publish/subscribe IoT cloud platform

has successfully addressed heterogeneity and security issues in integrating IoT and

cloud by implementing IoT device management, authentication, and authorization. Its

performance test results conclude that the sending delay time is directly proportional

to the number of connected publishers. It means that the fewer publishers publish data

simultaneously, the smaller the delay. Moreover, the system performs better at up to

250 publishers as the average delay time is less than 1000 ms, compared to 500

publishers that has average delay time above 1000 ms. When scalability is on the

296 JITeCS Volume 6, Number 3, December 2021, pp 288-296

p-ISSN: 2540-9433; e-ISSN: 2540-9824

table, the system can have 191 publishers responded in less than one second in a 250-

concurrent-publishers window with 100% success rate, and 187 publishers responded

in less than one second in a 500-concurrent-publishers window with 99% success rate.

Based on experiments, the system can deal with 0 to 250 publishers simultaneously to

get better performance results.

References

1. Guoqiang, S., Yanming, C., Chao, Z. & Yanxu, Z.: Design and Implementation of a Smart

IoT Gateway. In: 2013 IEEE International Confrence on Green Computing and
Communications and IEEE Cyber, Physical and Social Computing, pp. 720–723 (2013)

2. Botta, A., Donato, W. d., Persico, V. & Pescape, A.: Integration of Cloud Computing and
Internet of Things: A Survey. In: Future Generation Computer Systems, pp. 684-700 (2016)

3. Zhang, Q., Cheng, L. & Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. In: J Internet Serv Appl, Volume I, pp. 7-18 (2010)

4. OASIS Open, https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf (2019)

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

